Bounded homeomorphisms of the open annulus

نویسنده

  • DAVID RICHESON
چکیده

We prove a generalization of the Poincaré-Birkhoff theorem for the open annulus showing that if a homeomorphism satisfies a certain twist condition and the nonwandering set is connected, then there is a fixed point. Our main focus is the study of bounded homeomorphisms of the open annulus. We prove a fixed point theorem for bounded homeomorphisms and study the special case of those homeomorphisms possessing at most one fixed point. Lastly we use the existence of rational rotation numbers to prove the existence of periodic orbits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-rotations of the open annulus

In this paper, we study pseudo-rotations of the open annulus, i.e. conservative homeomorphisms of the open annulus whose rotation set is reduced to a single irrational number (the angle of the pseudo-rotation). We prove in particular that, for every pseudo-rotation h of angle ρ, the rigid rotation of angle ρ is in the closure of the conjugacy class of h. We also prove that pseudo-rotations are ...

متن کامل

Periodic Point Free Homeomorphisms of the Open Annulus: from Skew Products to Non-fibred Maps

The aim of this paper is to study and compare the dynamics of two classes of periodic point free homeomorphisms of the open annulus, homotopic to the identity. First, we consider skew products over irrational rotations (often called quasiperiodically forced monotone maps) and derive a decomposition of the phase space that strengthens a classification given by J. Stark. There exists a sequence o...

متن کامل

Chain Transitivity and Rotation Shadowing for Annulus Homeomorphisms

We present a relation between the rotation of chain transitive sets and the rotation shadowing for annulus homeomorphisms isotopic to identity.

متن کامل

On the Dynamics of Homology-preserving Homeomorphisms of the Annulus

We consider the homeomorphisms of the compact annulus A = S1 × [−1, 1] isotopic to the symmetry SA which interchanges the two boundary components. We prove that if such a homeomorphism is, in some sense, conservative and twisted, then it possesses a periodic orbit of period exactly two. This can be regarded as a counterpart of the Poincaré-Birkhoff theorem in the isotopy class of SA.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003